Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal coacting Poisson Hopf algebras (1912.00495v3)

Published 1 Dec 2019 in math.QA and math.RA

Abstract: We introduce the analogue of Manin's universal coacting (bialgebra) Hopf algebra for Poisson algebras. First, for two given Poisson algebras $P$ and $U$, where $U$ is finite dimensional, we construct a Poisson algebra $\mathcal{B}(P,\, U)$ together with a Poisson algebra homomorphism $\psi_{\mathcal{B}(P,\,U)} \colon P \to U \otimes \mathcal{B}(P,\, U)$ satisfying a suitable universal property. $\mathcal{B}(P,\, U)$ is shown to admit a Poisson bialgebra structure for any pair of Poisson algebra homomorphisms subject to certain compatibility conditions. If $P=U$ is a finite dimensional Poisson algebra then $\mathcal{B}(P) = \mathcal{B}(P,\, P)$ admits a unique Poisson bialgebra structure such that $\psi_{\mathcal{B}(P)}$ becomes a Poisson comodule algebra and, moreover, the pair $\bigl(\mathcal{B}(P),\, \psi_{\mathcal{B}(P)}\bigl)$ is the universal coacting bialgebra of $P$. The universal coacting Poisson Hopf algebra $\mathcal{H}(P)$ on $P$ is constructed as the initial object in the category of Poisson comodule algebra structures on $P$ by using the free Poisson Hopf algebra on a Poisson bialgebra (\cite{A1}).

Summary

We haven't generated a summary for this paper yet.