Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training Distributed Deep Recurrent Neural Networks with Mixed Precision on GPU Clusters (1912.00286v1)

Published 30 Nov 2019 in cs.LG

Abstract: In this paper, we evaluate training of deep recurrent neural networks with half-precision floats. We implement a distributed, data-parallel, synchronous training algorithm by integrating TensorFlow and CUDA-aware MPI to enable execution across multiple GPU nodes and making use of high-speed interconnects. We introduce a learning rate schedule facilitating neural network convergence at up to $O(100)$ workers. Strong scaling tests performed on clusters of NVIDIA Pascal P100 GPUs show linear runtime and logarithmic communication time scaling for both single and mixed precision training modes. Performance is evaluated on a scientific dataset taken from the Joint European Torus (JET) tokamak, containing multi-modal time series of sensory measurements leading up to deleterious events called plasma disruptions, and the benchmark Large Movie Review Dataset~\cite{imdb}. Half-precision significantly reduces memory and network bandwidth, allowing training of state-of-the-art models with over 70 million trainable parameters while achieving a comparable test set performance as single precision.

Citations (26)

Summary

We haven't generated a summary for this paper yet.