Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Approximate Inference with Walsh-Hadamard Variational Inference (1912.00015v1)

Published 29 Nov 2019 in stat.ML and cs.LG

Abstract: Variational inference offers scalable and flexible tools to tackle intractable Bayesian inference of modern statistical models like Bayesian neural networks and Gaussian processes. For largely over-parameterized models, however, the over-regularization property of the variational objective makes the application of variational inference challenging. Inspired by the literature on kernel methods, and in particular on structured approximations of distributions of random matrices, this paper proposes Walsh-Hadamard Variational Inference, which uses Walsh-Hadamard-based factorization strategies to reduce model parameterization, accelerate computations, and increase the expressiveness of the approximate posterior beyond fully factorized ones.

Citations (1)

Summary

We haven't generated a summary for this paper yet.