Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Restricted Second-Order Logic for Non-deterministic Poly-Logarithmic Time (1912.00010v1)

Published 29 Nov 2019 in cs.LO and math.LO

Abstract: We introduce a restricted second-order logic $\mathrm{SO}{\mathit{plog}}$ for finite structures where second-order quantification ranges over relations of size at most poly-logarithmic in the size of the structure. We demonstrate the relevance of this logic and complexity class by several problems in database theory. We then prove a Fagin's style theorem showing that the Boolean queries which can be expressed in the existential fragment of $\mathrm{SO}{\mathit{plog}}$ corresponds exactly to the class of decision problems that can be computed by a non-deterministic Turing machine with random access to the input in time $O((\log n)k)$ for some $k \ge 0$, i.e., to the class of problems computable in non-deterministic poly-logarithmic time. It should be noted that unlike Fagin's theorem which proves that the existential fragment of second-order logic captures NP over arbitrary finite structures, our result only holds over ordered finite structures, since $\mathrm{SO}{\mathit{plog}}$ is too weak as to define a total order of the domain. Nevertheless $\mathrm{SO}{\mathit{plog}}$ provides natural levels of expressibility within poly-logarithmic space in a way which is closely related to how second-order logic provides natural levels of expressibility within polynomial space. Indeed, we show an exact correspondence between the quantifier prefix classes of $\mathrm{SO}{\mathit{plog}}$ and the levels of the non-deterministic poly-logarithmic time hierarchy, analogous to the correspondence between the quantifier prefix classes of second-order logic and the polynomial-time hierarchy. Our work closely relates to the constant depth quasipolynomial size AND/OR circuits and corresponding restricted second-order logic defined by David A. Mix Barrington in 1992. We explore this relationship in detail.

Citations (3)

Summary

We haven't generated a summary for this paper yet.