Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete-Continuous Jacobi-Sobolev Spaces and Fourier Series (1911.12746v2)

Published 28 Nov 2019 in math.CA and math.CV

Abstract: Let $p\geq 1$, $\ell\in \NN$, $\alpha,\beta>-1$ and $\varpi=(\omega_0,\omega_1, \dots, \omega_{\ell-1})\in \RR{\ell}$. Given a suitable function $f$, we define the discrete-continuous Jacobi-Sobolev norm of $f$ as: $$ \normSp{f}:= \left(\sum_{k=0}{\ell-1} \left|f{(k)}(\omega_{k})\right|{p} + \int_{-1}{1} \left|f{(\ell)}(x)\right|{p} d\Jm(x)\right){\frac{1}{p}}, $$ where $ d\Jm(x)=(1-x){\alpha} (1+x){\beta}dx$. Obviously, $\normSp[2]{\cdot}= \sqrt{\IpS{\cdot}{\cdot}}$, where $\IpS{\cdot}{\cdot}$ is the inner product. $$ \IpS{f}{g}:= \sum_{k=0}{\ell-1} f{(k)}(\omega_{k}) \, g{(k)}(\omega_{k}) + \int_{-1}{1} f{(\ell)}(x) \,g{(\ell)}(x) d\Jm(x). $$ In this paper, we summarize the main advances on the convergence of the Fourier-Sobolev series, in norms of type $Lp$, cases continuous and discrete. We study the completeness of the Sobolev space of functions associated with the norm $\normSp{\cdot}$ and the denseness of the polynomials. Furthermore, we obtain the conditions for the convergence in $\normSp{\cdot}$ norm of the partial sum of the Fourier-Sobolev series of orthogonal polynomials with respect to $\IpS{\cdot}{\cdot}$ .

Summary

We haven't generated a summary for this paper yet.