Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous Dropout (1911.12675v1)

Published 28 Nov 2019 in cs.CV, cs.LG, cs.NE, and stat.ML

Abstract: Dropout has been proven to be an effective algorithm for training robust deep networks because of its ability to prevent overfitting by avoiding the co-adaptation of feature detectors. Current explanations of dropout include bagging, naive Bayes, regularization, and sex in evolution. According to the activation patterns of neurons in the human brain, when faced with different situations, the firing rates of neurons are random and continuous, not binary as current dropout does. Inspired by this phenomenon, we extend the traditional binary dropout to continuous dropout. On the one hand, continuous dropout is considerably closer to the activation characteristics of neurons in the human brain than traditional binary dropout. On the other hand, we demonstrate that continuous dropout has the property of avoiding the co-adaptation of feature detectors, which suggests that we can extract more independent feature detectors for model averaging in the test stage. We introduce the proposed continuous dropout to a feedforward neural network and comprehensively compare it with binary dropout, adaptive dropout, and DropConnect on MNIST, CIFAR-10, SVHN, NORB, and ILSVRC-12. Thorough experiments demonstrate that our method performs better in preventing the co-adaptation of feature detectors and improves test performance. The code is available at: https://github.com/jasonustc/caffe-multigpu/tree/dropout.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xu Shen (45 papers)
  2. Xinmei Tian (50 papers)
  3. Tongliang Liu (251 papers)
  4. Fang Xu (24 papers)
  5. Dacheng Tao (829 papers)
Citations (61)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com