Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AIPNet: Generative Adversarial Pre-training of Accent-invariant Networks for End-to-end Speech Recognition (1911.11935v1)

Published 27 Nov 2019 in cs.CL, cs.SD, and eess.AS

Abstract: As one of the major sources in speech variability, accents have posed a grand challenge to the robustness of speech recognition systems. In this paper, our goal is to build a unified end-to-end speech recognition system that generalizes well across accents. For this purpose, we propose a novel pre-training framework AIPNet based on generative adversarial nets (GAN) for accent-invariant representation learning: Accent Invariant Pre-training Networks. We pre-train AIPNet to disentangle accent-invariant and accent-specific characteristics from acoustic features through adversarial training on accented data for which transcriptions are not necessarily available. We further fine-tune AIPNet by connecting the accent-invariant module with an attention-based encoder-decoder model for multi-accent speech recognition. In the experiments, our approach is compared against four baselines including both accent-dependent and accent-independent models. Experimental results on 9 English accents show that the proposed approach outperforms all the baselines by 2.3 \sim 4.5% relative reduction on average WER when transcriptions are available in all accents and by 1.6 \sim 6.1% relative reduction when transcriptions are only available in US accent.

Citations (30)

Summary

We haven't generated a summary for this paper yet.