Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Scalable Framework for Solving Fractional Diffusion Equations (1911.11906v1)

Published 27 Nov 2019 in cs.DC, cs.NA, and math.NA

Abstract: The study of fractional order differential operators is receiving renewed attention in many scientific fields. In order to accommodate researchers doing work in these areas, there is a need for highly scalable numerical methods for solving partial differential equations that involve fractional order operators on complex geometries. These operators have desirable special properties that also change the computational considerations in such a way that undermines traditional methods and makes certain other approaches more appealing. We have developed a scalable framework for solving fractional diffusion equations using one such method, specifically the method of eigenfunction expansion. In this paper, we will discuss the specific parallelization strategies used to efficiently compute the full set of eigenvalues and eigenvectors for a discretized Laplace eigenvalue problem and apply them to construct approximate solutions to our fractional order model problems. Additionally, we demonstrate the performance of the method on the Frontera computing cluster and the accuracy of the method on simple geometries using known exact solutions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.