Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Query Expansion for Patent Searching using Word Embedding and Professional Crowdsourcing (1911.11069v1)

Published 14 Nov 2019 in cs.IR, cs.CL, and cs.LG

Abstract: The patent examination process includes a search of previous work to verify that a patent application describes a novel invention. Patent examiners primarily use keyword-based searches to uncover prior art. A critical part of keyword searching is query expansion, which is the process of including alternate terms such as synonyms and other related words, since the same concepts are often described differently in the literature. Patent terminology is often domain specific. By curating technology-specific corpora and training word embedding models based on these corpora, we are able to automatically identify the most relevant expansions of a given word or phrase. We compare the performance of several automated query expansion techniques against expert specified expansions. Furthermore, we explore a novel mechanism to extract related terms not just based on one input term but several terms in conjunction by computing their centroid and identifying the nearest neighbors to this centroid. Highly skilled patent examiners are often the best and most reliable source of identifying related terms. By designing a user interface that allows examiners to interact with the word embedding suggestions, we are able to use these interactions to power crowdsourced modes of related terms. Learning from users allows us to overcome several challenges such as identifying words that are bleeding edge and have not been published in the corpus yet. This paper studies the effectiveness of word embedding and crowdsourced models across 11 disparate technical areas.

Citations (5)

Summary

We haven't generated a summary for this paper yet.