Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discriminative training of conditional random fields with probably submodular constraints (1911.10819v1)

Published 25 Nov 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Problems of segmentation, denoising, registration and 3D reconstruction are often addressed with the graph cut algorithm. However, solving an unconstrained graph cut problem is NP-hard. For tractable optimization, pairwise potentials have to fulfill the submodularity inequality. In our learning paradigm, pairwise potentials are created as the dot product of a learned vector w with positive feature vectors. In order to constrain such a model to remain tractable, previous approaches have enforced the weight vector to be positive for pairwise potentials in which the labels differ, and set pairwise potentials to zero in the case that the label remains the same. Such constraints are sufficient to guarantee that the resulting pairwise potentials satisfy the submodularity inequality. However, we show that such an approach unnecessarily restricts the capacity of the learned models. Guaranteeing submodularity for all possible inputs, no matter how improbable, reduces inference error to effectively zero, but increases model error. In contrast, we relax the requirement of guaranteed submodularity to solutions that are probably approximately submodular. We show that the conceptually simple strategy of enforcing submodularity on the training examples guarantees with low sample complexity that test images will also yield submodular pairwise potentials. Results are presented in the binary and muticlass settings, showing substantial improvement from the resulting increased model capacity.

Summary

We haven't generated a summary for this paper yet.