Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-parametric Uni-modality Constraints for Deep Ordinal Classification (1911.10720v3)

Published 25 Nov 2019 in cs.LG and stat.ML

Abstract: We propose a new constrained-optimization formulation for deep ordinal classification, in which uni-modality of the label distribution is enforced implicitly via a set of inequality constraints over all the pairs of adjacent labels. Based on (c-1) constraints for c labels, our model is non-parametric and, therefore, more flexible than the existing deep ordinal classification techniques. Unlike these, it does not restrict the learned representation to a single and specific parametric model (or penalty) imposed on all the labels. Therefore, it enables the training to explore larger spaces of solutions, while removing the need for ad hoc choices and scaling up to large numbers of labels. It can be used in conjunction with any standard classification loss and any deep architecture. To tackle the ensuing challenging optimization problem, we solve a sequence of unconstrained losses based on a powerful extension of the log-barrier method. This handles effectively competing constraints and accommodates standard SGD for deep networks, while avoiding computationally expensive Lagrangian dual steps and outperforming substantially penalty methods. Furthermore, we propose a new performance metric for ordinal classification, as a proxy to measure distribution uni-modality, referred to as the Sides Order Index (SOI). We report comprehensive evaluations and comparisons to state-of-the-art methods on benchmark public datasets for several ordinal classification tasks, showing the merits of our approach in terms of label consistency, classification accuracy and scalability. Importantly, enforcing label consistency with our model does not incur higher classification errors, unlike many existing ordinal classification methods. A public reproducible PyTorch implementation is provided. (https://github.com/sbelharbi/unimodal-prob-deep-oc-free-distribution)

Citations (9)

Summary

We haven't generated a summary for this paper yet.