Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Corrigendum on the proof of completeness for exceptional Hermite polynomials (1911.10602v1)

Published 24 Nov 2019 in math.CA, math-ph, math.MP, and nlin.SI

Abstract: Exceptional orthogonal polynomials are complete families of orthogonal polynomials that arise as eigenfunctions of a Sturm-Liouville problem. Antonio Dur\'an discovered a gap in the original proof of completeness for exceptional Hermite polynomials, that has propagated to analogous results for other exceptional families. In this paper we provide an alternative proof that follows essentially the same arguments, but provides a direct proof of the key lemma on which the completeness proof is based. This direct proof makes use of the theory of trivial monodromy potentials developed by Duistermaat and Gr\"unbaum and Oblomkov.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.