Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Networks Learning and Memorization with (almost) no Over-Parameterization (1911.09873v1)

Published 22 Nov 2019 in cs.LG and stat.ML

Abstract: Many results in recent years established polynomial time learnability of various models via neural networks algorithms. However, unless the model is linear separable, or the activation is a polynomial, these results require very large networks -- much more than what is needed for the mere existence of a good predictor. In this paper we prove that SGD on depth two neural networks can memorize samples, learn polynomials with bounded weights, and learn certain kernel spaces, with near optimal network size, sample complexity, and runtime. In particular, we show that SGD on depth two network with $\tilde{O}\left(\frac{m}{d}\right)$ hidden neurons (and hence $\tilde{O}(m)$ parameters) can memorize $m$ random labeled points in $\mathbb{S}{d-1}$.

Citations (33)

Summary

We haven't generated a summary for this paper yet.