Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Tactile Fusion Object Clustering (1911.09430v1)

Published 21 Nov 2019 in cs.LG, cs.RO, and stat.ML

Abstract: Object clustering, aiming at grouping similar objects into one cluster with an unsupervised strategy, has been extensivelystudied among various data-driven applications. However, most existing state-of-the-art object clustering methods (e.g., single-view or multi-view clustering methods) only explore visual information, while ignoring one of most important sensing modalities, i.e., tactile information which can help capture different object properties and further boost the performance of object clustering task. To effectively benefit both visual and tactile modalities for object clustering, in this paper, we propose a deep Auto-Encoder-like Non-negative Matrix Factorization framework for visual-tactile fusion clustering. Specifically, deep matrix factorization constrained by an under-complete Auto-Encoder-like architecture is employed to jointly learn hierarchical expression of visual-tactile fusion data, and preserve the local structure of data generating distribution of visual and tactile modalities. Meanwhile, a graph regularizer is introduced to capture the intrinsic relations of data samples within each modality. Furthermore, we propose a modality-level consensus regularizer to effectively align thevisual and tactile data in a common subspace in which the gap between visual and tactile data is mitigated. For the model optimization, we present an efficient alternating minimization strategy to solve our proposed model. Finally, we conduct extensive experiments on public datasets to verify the effectiveness of our framework.

Citations (18)

Summary

We haven't generated a summary for this paper yet.