Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification-driven Single Image Dehazing (1911.09389v1)

Published 21 Nov 2019 in cs.CV

Abstract: Most existing dehazing algorithms often use hand-crafted features or Convolutional Neural Networks (CNN)-based methods to generate clear images using pixel-level Mean Square Error (MSE) loss. The generated images generally have better visual appeal, but not always have better performance for high-level vision tasks, e.g. image classification. In this paper, we investigate a new point of view in addressing this problem. Instead of focusing only on achieving good quantitative performance on pixel-based metrics such as Peak Signal to Noise Ratio (PSNR), we also ensure that the dehazed image itself does not degrade the performance of the high-level vision tasks such as image classification. To this end, we present an unified CNN architecture that includes three parts: a dehazing sub-network (DNet), a classification-driven Conditional Generative Adversarial Networks sub-network (CCGAN) and a classification sub-network (CNet) related to image classification, which has better performance both on visual appeal and image classification. We conduct comprehensive experiments on two challenging benchmark datasets for fine-grained and object classification: CUB-200-2011 and Caltech-256. Experimental results demonstrate that the proposed method outperforms many recent state-of-the-art single image dehazing methods in terms of image dehazing metrics and classification accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.