Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Proxy Generation for Fast and Efficient Neural Architecture Search (1911.09322v1)

Published 21 Nov 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Due to the recent advances on Neural Architecture Search (NAS), it gains popularity in designing best networks for specific tasks. Although it shows promising results on many benchmarks and competitions, NAS still suffers from its demanding computation cost for searching high dimensional architectural design space, and this problem becomes even worse when we want to use a large-scale dataset. If we can make a reliable data proxy for NAS, the efficiency of NAS approaches increase accordingly. Our basic observation for making a data proxy is that each example in a specific dataset has a different impact on NAS process and most of examples are redundant from a relative accuracy ranking perspective, which we should preserve when making a data proxy. We propose a systematic approach to measure the importance of each example from this relative accuracy ranking point of view, and make a reliable data proxy based on the statistics of training and testing examples. Our experiment shows that we can preserve the almost same relative accuracy ranking between all possible network configurations even with 10-20$\times$ smaller data proxy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.