Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unified Multifaceted Feature Learning for Person Re-Identification (1911.08651v2)

Published 20 Nov 2019 in cs.CV

Abstract: Person re-identification (ReID) aims at re-identifying persons from different viewpoints across multiple cameras, of which it is of great importance to learn multifaceted features expressed in different parts of a person, e.g., clothes, bags, and other accessories in the main body, appearance in the head, and shoes in the foot. To learn such features, existing methods are focused on the striping-based approach that builds multi-branch neural networks to learn local features in each part of the identities, with one-branch network dedicated to one part. This results in complex models with a large number of parameters. To address this issue, this paper proposes to learn the multifaceted features in a simple unified single-branch neural network. The Unified Multifaceted Feature Learning (UMFL) framework is introduced to fulfill this goal, which consists of two key collaborative modules: compound batch image erasing (including batch constant erasing and random erasing) and hierarchical structured loss. The loss structures the augmented images resulted by the two types of image erasing in a two-level hierarchy and enforces multifaceted attention to different parts. As we show in the extensive experimental results on four benchmark person ReID datasets, despite the use of significantly simplified network structure, our method performs substantially better than state-of-the-art competing methods. Our method can also effectively generalize to vehicle ReID, achieving similar improvement on two vehicle ReID datasets.

Summary

We haven't generated a summary for this paper yet.