Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sieving Fake News From Genuine: A Synopsis (1911.08516v1)

Published 19 Nov 2019 in cs.CR and cs.CY

Abstract: With the rise of social media, it has become easier to disseminate fake news faster and cheaper, compared to traditional news media, such as television and newspapers. Recently this phenomenon has attracted lot of public attention, because it is causing significant social and financial impacts on their lives and businesses. Fake news are responsible for creating false, deceptive, misleading, and suspicious information that can greatly effect the outcome of an event. This paper presents a synopsis that explains what are fake news with examples and also discusses some of the current machine learning techniques, specifically NLP and deep learning, for automatically predicting and detecting fake news. Based on this synopsis, we recommend that there is a potential of using NLP and deep learning to improve automatic detection of fake news, but with the right set of data and features.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shahid Alam (10 papers)
  2. Abdulaziz Ravshanbekov (1 paper)
Citations (5)