Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Effectiveness of Variational Autoencoders for Active Learning (1911.07716v1)

Published 18 Nov 2019 in cs.LG, cs.CV, cs.IR, and stat.ML

Abstract: The high cost of acquiring labels is one of the main challenges in deploying supervised machine learning algorithms. Active learning is a promising approach to control the learning process and address the difficulties of data labeling by selecting labeled training examples from a large pool of unlabeled instances. In this paper, we propose a new data-driven approach to active learning by choosing a small set of labeled data points that are both informative and representative. To this end, we present an efficient geometric technique to select a diverse core-set in a low-dimensional latent space obtained by training a Variational Autoencoder (VAE). Our experiments demonstrate an improvement in accuracy over two related techniques and, more importantly, signify the representation power of generative modeling for developing new active learning methods in high-dimensional data settings.

Citations (4)

Summary

We haven't generated a summary for this paper yet.