Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Freeness of Unitary Matrices in Tensor Product Spaces for Invariant States (1911.07627v2)

Published 18 Nov 2019 in math.PR, math.CO, and math.OA

Abstract: In this paper, we pursue our study of asymptotic properties of families of random matrices that have a tensor structure. In previous work, the first- and second-named authors provided conditions under which tensor products of unitary random matrices are asymptotically free with respect to the normalized trace. Here, we extend this result by proving that asymptotic freeness of tensor products of Haar unitary matrices holds with respect to a significantly larger class of states. Our result relies on invariance under the symmetric group, and therefore on traffic probability. As a byproduct, we explore two additional generalisations: (i) we state results of freeness in a context of general sequences of representations of the unitary group -- the fundamental representation being a particular case that corresponds to the classical asymptotic freeness result for Haar unitary matrices, and (ii) we consider actions of the symmetric group and the free group simultaneously and obtain a result of asymptotic freeness in this context as well.

Summary

We haven't generated a summary for this paper yet.