Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A geometric look at momentum flux and stress in fluid mechanics (1911.06613v2)

Published 15 Nov 2019 in physics.flu-dyn

Abstract: We develop a geometric formulation of fluid dynamics, valid on arbitrary Riemannian manifolds, that regards the momentum-flux and stress tensors as 1-form valued 2-forms, and their divergence as a covariant exterior derivative. We review the necessary tools of differential geometry and obtain the corresponding coordinate-free form of the equations of motion for a variety of inviscid fluid models -- compressible and incompressible Euler equations, Lagrangian-averaged Euler-$\alpha$ equations, magnetohydrodynamics and shallow-water models -- using a variational derivation which automatically yields a symmetric momentum flux. We also consider dissipative effects and discuss the geometric form of the Navier--Stokes equations for viscous fluids and of the Oldroyd-B model for visco-elastic fluids.

Summary

We haven't generated a summary for this paper yet.