Papers
Topics
Authors
Recent
Search
2000 character limit reached

Entanglement-assisted Quantum Codes from Cyclic Codes

Published 14 Nov 2019 in cs.IT, math.IT, and quant-ph | (1911.06384v1)

Abstract: Entanglement-assisted quantum (QUENTA) codes are a subclass of quantum error-correcting codes which use entanglement as a resource. These codes can provide error correction capability higher than the codes derived from the traditional stabilizer formalism. In this paper, it is shown a general method to construct QUENTA codes from cyclic codes. Afterwards, the method is applied to Reed-Solomon codes, BCH codes, and general cyclic codes. We use the Euclidean and Hermitian construction of QUENTA codes. Two families of QUENTA codes are maximal distance separable (MDS), and one is almost MDS or almost near MDS. The comparison of the codes in this paper is mostly based on the quantum Singleton bound.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.