Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Canonical Distortion Measure for Vector Quantization and Function Approximation (1911.06319v1)

Published 14 Nov 2019 in cs.LG and stat.ML

Abstract: To measure the quality of a set of vector quantization points a means of measuring the distance between a random point and its quantization is required. Common metrics such as the {\em Hamming} and {\em Euclidean} metrics, while mathematically simple, are inappropriate for comparing natural signals such as speech or images. In this paper it is shown how an {\em environment} of functions on an input space $X$ induces a {\em canonical distortion measure} (CDM) on X. The depiction 'canonical" is justified because it is shown that optimizing the reconstruction error of X with respect to the CDM gives rise to optimal piecewise constant approximations of the functions in the environment. The CDM is calculated in closed form for several different function classes. An algorithm for training neural networks to implement the CDM is presented along with some encouraging experimental results.

Citations (21)

Summary

We haven't generated a summary for this paper yet.