Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Mean-field reflected backward stochastic differential equations (1911.06079v1)

Published 14 Nov 2019 in math.PR

Abstract: In this paper, we study a class of reflected backward stochastic differential equations (BSDEs) of mean-field type, where the mean-field interaction in terms of the distribution of the $Y$-component of the solution enters in both the driver and the lower obstacle. We consider in details the case where the lower obstacle is a deterministic function of $(Y,\E[Y])$ and discuss the more general dependence on the distribution of $Y$. Under mild Lipschitz and integrability conditions on the coefficients, we obtain the well-posedness of such a class of equations. Under further monotonicity conditions, we show convergence of the standard penalization scheme to the solution of the equation, which hence satisfies a minimality property. This class of equations is motivated by applications in pricing life insurance contracts with surrender options.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.