Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducibility of parameter ideals in low powers of the maximal ideal (1911.06004v2)

Published 14 Nov 2019 in math.AC

Abstract: A commutative noetherian local ring $(R,\mathfrak{m})$ is Gorenstein if and only if every parameter ideal of $R$ is irreducible. Although irreducible parameter ideals may exist in non-Gorenstein rings, Marley, Rogers, and Sakurai show there exists an integer $\ell$ (depending on $R$) such that $R$ is Gorenstein if and only if there exists an irreducible parameter ideal contained in $\mathfrak{m}\ell$. We give upper bounds for $\ell$ that depend primarily on the existence of certain systems of parameters in low powers of the maximal ideal.

Summary

We haven't generated a summary for this paper yet.