Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Reinforcement Learning-Driven Test Generation for Android GUI Applications using Formal Specifications (1911.05403v2)

Published 13 Nov 2019 in cs.SE, cs.AI, and cs.LG

Abstract: There have been many studies on automated test generation for mobile Graphical User Interface (GUI) applications. These studies successfully demonstrate how to detect fatal exceptions and achieve high code and activity coverage with fully automated test generation engines. However, it is unclear how many GUI functions these engines manage to test. Furthermore, these engines implement only implicit test oracles. We propose Fully Automated Reinforcement LEArning-Driven Specification-Based Test Generator for Android (FARLEAD-Android). FARLEAD-Android accepts a GUI-level formal specification as a Linear-time Temporal Logic (LTL) formula. By dynamically executing the Application Under Test (AUT), it learns how to generate a test that satisfies the LTL formula using Reinforcement Learning (RL). The LTL formula does not just guide the test generation but also acts as a specified test oracle, enabling the developer to define automated test oracles for a wide variety of GUI functions by changing the formula. Our evaluation shows that FARLEAD-Android is more effective and achieves higher performance in generating tests for specified GUI functions than three known approaches, Random, Monkey, and QBEa. To the best of our knowledge, FARLEAD-Android is the first fully automated mobile GUI testing engine that uses formal specifications.

Citations (13)

Summary

We haven't generated a summary for this paper yet.