Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DupNet: Towards Very Tiny Quantized CNN with Improved Accuracy for Face Detection (1911.05341v1)

Published 13 Nov 2019 in cs.CV

Abstract: Deploying deep learning based face detectors on edge devices is a challenging task due to the limited computation resources. Even though binarizing the weights of a very tiny network gives impressive compactness on model size (e.g. 240.9 KB for IFQ-Tinier-YOLO), it is not tiny enough to fit in the embedded devices with strict memory constraints. In this paper, we propose DupNet which consists of two parts. Firstly, we employ weights with duplicated channels for the weight-intensive layers to reduce the model size. Secondly, for the quantization-sensitive layers whose quantization causes notable accuracy drop, we duplicate its input feature maps. It allows us to use more weights channels for convolving more representative outputs. Based on that, we propose a very tiny face detector, DupNet-Tinier-YOLO, which is 6.5X times smaller on model size and 42.0% less complex on computation and meanwhile achieves 2.4% higher detection than IFQ-Tinier-YOLO. Comparing with the full precision Tiny-YOLO, our DupNet-Tinier-YOLO gives 1,694.2X and 389.9X times savings on model size and computation complexity respectively with only 4.0% drop on detection rate (0.880 vs. 0.920). Moreover, our DupNet-Tinier-YOLO is only 36.9 KB, which is the tiniest deep face detector to our best knowledge.

Citations (4)

Summary

We haven't generated a summary for this paper yet.