Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Buffer-aware Wireless Scheduling based on Deep Reinforcement Learning (1911.05281v1)

Published 13 Nov 2019 in cs.IT, cs.LG, and math.IT

Abstract: In this paper, the downlink packet scheduling problem for cellular networks is modeled, which jointly optimizes throughput, fairness and packet drop rate. Two genie-aided heuristic search methods are employed to explore the solution space. A deep reinforcement learning (DRL) framework with A2C algorithm is proposed for the optimization problem. Several methods have been utilized in the framework to improve the sampling and training efficiency and to adapt the algorithm to a specific scheduling problem. Numerical results show that DRL outperforms the baseline algorithm and achieves similar performance as genie-aided methods without using the future information.

Citations (19)

Summary

We haven't generated a summary for this paper yet.