Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Medical Image Segmentation with Adversarial Networks: From Edge Diagrams to Segmentation Maps (1911.05140v1)

Published 12 Nov 2019 in eess.IV, cs.AI, cs.CV, and cs.LG

Abstract: We develop and approach to unsupervised semantic medical image segmentation that extends previous work with generative adversarial networks. We use existing edge detection methods to construct simple edge diagrams, train a generative model to convert them into synthetic medical images, and construct a dataset of synthetic images with known segmentations using variations on extracted edge diagrams. This synthetic dataset is then used to train a supervised image segmentation model. We test our approach on a clinical dataset of kidney ultrasound images and the benchmark ISIC 2018 skin lesion dataset. We show that our unsupervised approach is more accurate than previous unsupervised methods, and performs reasonably compared to supervised image segmentation models. All code and trained models are available at https://github.com/kiretd/Unsupervised-MIseg.

Citations (12)

Summary

We haven't generated a summary for this paper yet.