Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Independence and Connectivity of Connected Domination Critical Graphs (1911.04961v1)

Published 8 Nov 2019 in math.CO

Abstract: A graph $G$ is said to be $k$-$\gamma_{c}$-critical if the connected domination number $\gamma_{c}(G) = k$ and $\gamma_{c}(G + uv) < k$ for every $uv \in E(\overline{G})$. Let $\delta, \kappa$ and $\alpha$ be respectively the minimum degree, the connectivity and the independence number. In this paper, we show that a $3$-$\gamma_{c}$-critical graph $G$ satisfies $\alpha \leq \kappa + 2$. Moreover, if $\kappa \geq 3$, then $\alpha = \kappa + p$ if and only if $\alpha = \delta + p$ for all $p \in {1, 2}$. We show that the condition $\kappa + 1 \leq \alpha \leq \kappa + 2$ is best possible to prove that $\kappa = \delta$. By these result, we conclude our paper with an open problem on Hamiltonian connected of $3$-$\gamma_{c}$-critical graphs.

Summary

We haven't generated a summary for this paper yet.