Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word Sense Disambiguation using Knowledge-based Word Similarity (1911.04015v2)

Published 11 Nov 2019 in cs.CL

Abstract: In natural language processing, word-sense disambiguation (WSD) is an open problem concerned with identifying the correct sense of words in a particular context. To address this problem, we introduce a novel knowledge-based WSD system. We suggest the adoption of two methods in our system. First, we suggest a novel method to encode the word vector representation by considering the graphical semantic relationships from the lexical knowledge-base. Second, we propose a method for extracting the contextual words from the text for analyzing an ambiguous word based on the similarity of word vector representations. To validate the effectiveness of our WSD system, we conducted experiments on the five benchmark English WSD corpora (Senseval-02, Senseval-03, SemEval-07, SemEval-13, and SemEval-15). The obtained results demonstrated that the suggested methods significantly enhanced the WSD performance. Furthermore, our system outperformed the existing knowledge-based WSD systems and showed a performance comparable to that of the state-of-the-art supervised WSD systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sunjae Kwon (16 papers)
  2. Dongsuk Oh (7 papers)
  3. Youngjoong Ko (5 papers)

Summary

We haven't generated a summary for this paper yet.