On Posterior Collapse and Encoder Feature Dispersion in Sequence VAEs (1911.03976v2)
Abstract: Variational autoencoders (VAEs) hold great potential for modelling text, as they could in theory separate high-level semantic and syntactic properties from local regularities of natural language. Practically, however, VAEs with autoregressive decoders often suffer from posterior collapse, a phenomenon where the model learns to ignore the latent variables, causing the sequence VAE to degenerate into a LLM. In this paper, we argue that posterior collapse is in part caused by the lack of dispersion in encoder features. We provide empirical evidence to verify this hypothesis, and propose a straightforward fix using pooling. This simple technique effectively prevents posterior collapse, allowing model to achieve significantly better data log-likelihood than standard sequence VAEs. Comparing to existing work, our proposed method is able to achieve comparable or superior performances while being more computationally efficient.