Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Armed Bandits with Correlated Arms (1911.03959v4)

Published 6 Nov 2019 in stat.ML and cs.LG

Abstract: We consider a multi-armed bandit framework where the rewards obtained by pulling different arms are correlated. We develop a unified approach to leverage these reward correlations and present fundamental generalizations of classic bandit algorithms to the correlated setting. We present a unified proof technique to analyze the proposed algorithms. Rigorous analysis of C-UCB (the correlated bandit version of Upper-confidence-bound) reveals that the algorithm ends up pulling certain sub-optimal arms, termed as non-competitive, only O(1) times, as opposed to the O(log T) pulls required by classic bandit algorithms such as UCB, TS etc. We present regret-lower bound and show that when arms are correlated through a latent random source, our algorithms obtain order-optimal regret. We validate the proposed algorithms via experiments on the MovieLens and Goodreads datasets, and show significant improvement over classical bandit algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Samarth Gupta (12 papers)
  2. Shreyas Chaudhari (19 papers)
  3. Gauri Joshi (73 papers)
  4. Osman Yağan (38 papers)
Citations (46)