Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A conservative diffuse-interface method for compressible two-phase flows (1911.03619v3)

Published 9 Nov 2019 in physics.comp-ph and physics.flu-dyn

Abstract: In this article, we propose a novel conservative diffuse-interface method for the simulation of immiscible compressible two-phase flows. The proposed method discretely conserves the mass of each phase, momentum and total energy of the system. We use the baseline five-equation model and propose interface-regularization (diffusion--sharpening) terms in such a way that the resulting model maintains the conservative property of the underlying baseline model; and lets us use a central-difference scheme for the discretization of all the operators in the model, which leads to a non-dissipative implementation that is crucial for the simulation of turbulent flows and acoustics. Furthermore, the provable strengths of the proposed model are: (a) the model maintains the boundedness property of the volume fraction field, which is a physical realizability requirement for the simulation of two-phase flows, (b) the proposed model is such that the transport of volume fraction field inherently satisfies the total-variation-diminishing property without having to add any flux limiters that destroy the non-dissipative nature of the scheme, (c) the proposed interface-regularization terms in the model do not spuriously contribute to the kinetic energy of the system and therefore do not affect the non-linear stability of the numerical simulation, and (d) the model is consistent with the second law of thermodynamics. Finally, we present numerical simulations using the model and assess (a) the accuracy of evolution of the interface shape, (b) implementation of surface tension effects, (c) propagation of acoustics and their interaction with material interfaces, (d) the accuracy and robustness of the numerical scheme for simulation of complex high-Reynolds-number flows, and (e) performance and scalability of the method.

Summary

We haven't generated a summary for this paper yet.