Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Machine Reading Comprehension via Adversarial Training (1911.03614v1)

Published 9 Nov 2019 in cs.CL, cs.LG, and cs.NE

Abstract: Adversarial training (AT) as a regularization method has proved its effectiveness in various tasks, such as image classification and text classification. Though there are successful applications of AT in many tasks of NLP, the mechanism behind it is still unclear. In this paper, we aim to apply AT on machine reading comprehension (MRC) and study its effects from multiple perspectives. We experiment with three different kinds of RC tasks: span-based RC, span-based RC with unanswerable questions and multi-choice RC. The experimental results show that the proposed method can improve the performance significantly and universally on SQuAD1.1, SQuAD2.0 and RACE. With virtual adversarial training (VAT), we explore the possibility of improving the RC models with semi-supervised learning and prove that examples from a different task are also beneficial. We also find that AT helps little in defending against artificial adversarial examples, but AT helps the model to learn better on examples that contain more low-frequency words.

Citations (17)

Summary

We haven't generated a summary for this paper yet.