Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory-Augmented Recurrent Neural Networks Can Learn Generalized Dyck Languages (1911.03329v1)

Published 8 Nov 2019 in cs.CL, cs.LG, and cs.NE

Abstract: We introduce three memory-augmented Recurrent Neural Networks (MARNNs) and explore their capabilities on a series of simple LLMing tasks whose solutions require stack-based mechanisms. We provide the first demonstration of neural networks recognizing the generalized Dyck languages, which express the core of what it means to be a language with hierarchical structure. Our memory-augmented architectures are easy to train in an end-to-end fashion and can learn the Dyck languages over as many as six parenthesis-pairs, in addition to two deterministic palindrome languages and the string-reversal transduction task, by emulating pushdown automata. Our experiments highlight the increased modeling capacity of memory-augmented models over simple RNNs, while inflecting our understanding of the limitations of these models.

Citations (48)

Summary

We haven't generated a summary for this paper yet.