Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Robustness in Neural Machine Translation (1911.03109v2)

Published 8 Nov 2019 in cs.CL

Abstract: Translating text that diverges from the training domain is a key challenge for machine translation. Domain robustness---the generalization of models to unseen test domains---is low for both statistical (SMT) and neural machine translation (NMT). In this paper, we study the performance of SMT and NMT models on out-of-domain test sets. We find that in unknown domains, SMT and NMT suffer from very different problems: SMT systems are mostly adequate but not fluent, while NMT systems are mostly fluent, but not adequate. For NMT, we identify such hallucinations (translations that are fluent but unrelated to the source) as a key reason for low domain robustness. To mitigate this problem, we empirically compare methods that are reported to improve adequacy or in-domain robustness in terms of their effectiveness at improving domain robustness. In experiments on German to English OPUS data, and German to Romansh (a low-resource setting) we find that several methods improve domain robustness. While those methods do lead to higher BLEU scores overall, they only slightly increase the adequacy of translations compared to SMT.

Citations (94)

Summary

We haven't generated a summary for this paper yet.