Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Why Do Masked Neural Language Models Still Need Common Sense Knowledge? (1911.03024v1)

Published 8 Nov 2019 in cs.CL

Abstract: Currently, contextualized word representations are learned by intricate neural network models, such as masked neural LLMs (MNLMs). The new representations significantly enhanced the performance in automated question answering by reading paragraphs. However, identifying the detailed knowledge trained in the MNLMs is difficult owing to numerous and intermingled parameters. This paper provides empirical but insightful analyses on the pretrained MNLMs with respect to common sense knowledge. First, we propose a test that measures what types of common sense knowledge do pretrained MNLMs understand. From the test, we observed that MNLMs partially understand various types of common sense knowledge but do not accurately understand the semantic meaning of relations. In addition, based on the difficulty of the question-answering task problems, we observed that pretrained MLM-based models are still vulnerable to problems that require common sense knowledge. We also experimentally demonstrated that we can elevate existing MNLM-based models by combining knowledge from an external common sense repository.

Citations (16)

Summary

We haven't generated a summary for this paper yet.