Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A priori error estimates of regularized elliptic problems (1911.02293v2)

Published 6 Nov 2019 in math.NA and cs.NA

Abstract: Approximations of the Dirac delta distribution are commonly used to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution. In this work, we show a priori rates of convergence of this approximation process in standard Sobolev norms, with minimal regularity assumptions on the approximation of the Dirac delta distribution. The application of these estimates to the numerical solution of elliptic problems with singularly supported forcing terms allows us to provide sharp $H1$ and $L2$ error estimates for the corresponding regularized problem. As an application, we show how finite element approximations of a regularized immersed interface method result in the same rates of convergence of its non-regularized counterpart, provided that the support of the Dirac delta approximation is set to a multiple of the mesh size, at a fraction of the implementation complexity. Numerical experiments are provided to support our theories.

Citations (10)

Summary

We haven't generated a summary for this paper yet.