Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Diversification: A Simple Strategy For Neural Machine Translation (1911.01986v4)

Published 5 Nov 2019 in cs.CL and cs.LG

Abstract: We introduce Data Diversification: a simple but effective strategy to boost neural machine translation (NMT) performance. It diversifies the training data by using the predictions of multiple forward and backward models and then merging them with the original dataset on which the final NMT model is trained. Our method is applicable to all NMT models. It does not require extra monolingual data like back-translation, nor does it add more computations and parameters like ensembles of models. Our method achieves state-of-the-art BLEU scores of 30.7 and 43.7 in the WMT'14 English-German and English-French translation tasks, respectively. It also substantially improves on 8 other translation tasks: 4 IWSLT tasks (English-German and English-French) and 4 low-resource translation tasks (English-Nepali and English-Sinhala). We demonstrate that our method is more effective than knowledge distillation and dual learning, it exhibits strong correlation with ensembles of models, and it trades perplexity off for better BLEU score. We have released our source code at https://github.com/nxphi47/data_diversification

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com