Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on Quantum Markov Models (1911.01953v1)

Published 5 Nov 2019 in quant-ph, cs.LG, and math.OC

Abstract: The study of Markov models is central to control theory and machine learning. A quantum analogue of partially observable Markov decision process was studied in (Barry, Barry, and Aaronson, Phys. Rev. A, 90, 2014). It was proved that goal-state reachability is undecidable in the quantum setting, whereas it is decidable classically. In contrast to this classical-to-quantum transition from decidable to undecidable, we observe that the problem of approximating the optimal policy which maximizes the average discounted reward over an infinite horizon remains decidable in the quantum setting. Given that most relevant problems related to Markov decision process are undecidable classically (which immediately implies undecidability in the quantum case), this provides one of the few examples where the quantum problem is tractable.

Summary

We haven't generated a summary for this paper yet.