Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

Unsupervised Learning for Neural Network-based Polar Decoder via Syndrome Loss (1911.01710v1)

Published 5 Nov 2019 in eess.SP and cs.LG

Abstract: With the rapid growth of deep learning in many fields, machine learning-assisted communication systems had attracted lots of researches with many eye-catching initial results. At the present stage, most of the methods still have great demand of massive labeled data for supervised learning. However, obtaining labeled data in the practical applications is not feasible, which may result in severe performance degradation due to channel variations. To overcome such a constraint, syndrome loss has been proposed to penalize non-valid decoded codewords and achieve unsupervised learning for neural network-based decoder. However, it cannot be applied to polar decoder directly. In this work, by exploiting the nature of polar codes, we propose a modified syndrome loss. From simulation results, the proposed method demonstrates that domain-specific knowledge and know-how in code structure can enable unsupervised learning for neural network-based polar decoder.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.