Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speaker-invariant Affective Representation Learning via Adversarial Training (1911.01533v3)

Published 4 Nov 2019 in eess.AS, cs.LG, and cs.SD

Abstract: Representation learning for speech emotion recognition is challenging due to labeled data sparsity issue and lack of gold standard references. In addition, there is much variability from input speech signals, human subjective perception of the signals and emotion label ambiguity. In this paper, we propose a machine learning framework to obtain speech emotion representations by limiting the effect of speaker variability in the speech signals. Specifically, we propose to disentangle the speaker characteristics from emotion through an adversarial training network in order to better represent emotion. Our method combines the gradient reversal technique with an entropy loss function to remove such speaker information. Our approach is evaluated on both IEMOCAP and CMU-MOSEI datasets. We show that our method improves speech emotion classification and increases generalization to unseen speakers.

Citations (53)

Summary

We haven't generated a summary for this paper yet.