Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hopf algebras arising from dg manifolds (1911.01388v4)

Published 4 Nov 2019 in math.DG and math.QA

Abstract: Let $(\mathcal{M}, Q)$ be a dg manifold. The space of vector fields with shifted degrees $(\mathcal{X}(\mathcal{M})[-1], L_Q)$ is a Lie algebra object in the homology category $\mathrm{H}((C{\infty}_{\mathcal{M}},Q)\mathrm{-}\mathbf{mod})$ of dg modules over $(\mathcal{M},Q)$, the Atiyah class $\alpha_{\mathcal{M}}$ being its Lie bracket. The triple $(\mathcal{X}(\mathcal{M})[-1], L_Q; \alpha_{\mathcal{M}})$ is also a Lie algebra object in the Gabriel-Zisman homotopy category $\Pi((C{\infty}_{\mathcal{M}},Q)\mathrm{-}\mathbf{mod})$. In this paper, we describe the universal enveloping algebra of $(\mathcal{X}(\mathcal{M})[-1], L_Q; \alpha_{\mathcal{M}})$ and prove that it is a Hopf algebra object in $\Pi((C{\infty}_{\mathcal{M}},Q)\mathrm{-}\mathbf{mod})$. As an application, we study Fedosov dg Lie algebroids and recover a result of Sti\'enon, Xu, and the second author on the Hopf algebra arising from a Lie pair.

Summary

We haven't generated a summary for this paper yet.