Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Preprocessing for Evaluation of Recommendation Models in E-Commerce (1911.01273v1)

Published 25 Oct 2019 in cs.CY

Abstract: E-commerce businesses employ recommender models to assist in identifying a personalized set of products for each visitor. To accurately assess the recommendations' influence on customer clicks and buys, three target areas -- customer behavior, data collection, user-interface -- will be explored for possible sources of erroneous data. Varied customer behavior misrepresents the recommendations' true influence on a customer due to the presence of B2B interactions and outlier customers. Non-parametric statistical procedures for outlier removal are delineated and other strategies are investigated to account for the effect of a large percentage of new customers or high bounce rates. Subsequently, in data collection we identify probable misleading interactions in the raw data, propose a robust method of tracking unique visitors, and accurately attributing the buy influence for combo products. Lastly, user-interface issues discuss the possible problems caused due to the recommendation widget's positioning on the e-commerce website and the stringent conditions that should be imposed when utilizing data from the product listing page. This collective methodology results in an exact and valid estimation of the customer's interactions influenced by the recommendation model in the context of standard industry metrics, such as Click-through rates, Buy-through rates, and Conversion revenue.

Citations (6)

Summary

We haven't generated a summary for this paper yet.