Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized NLFSR Transformation Algorithms and Cryptanalysis of the Class of Espresso-like Stream Ciphers (1911.01002v1)

Published 4 Nov 2019 in cs.CR

Abstract: Lightweight stream ciphers are highly demanded in IoT applications. In order to optimize the hardware performance, a new class of stream cipher has been proposed. The basic idea is to employ a single Galois NLFSR with maximum period to construct the cipher. As a representative design of this kind of stream ciphers, Espresso is based on a 256-bit Galois NLFSR initialized by a 128-bit key. The $2{256}-1$ maximum period is assured because the Galois NLFSR is transformed from a maximum length LFSR. However, we propose a Galois-to-Fibonacci transformation algorithm and successfully transform the Galois NLFSR into a Fibonacci LFSR with a nonlinear output function. The transformed cipher is broken by the standard algebraic attack and the R\o njom-Helleseth attack with complexity $\mathcal{O}(2{68.44})$ and $\mathcal{O}(2{66.86})$ respectively. The transformation algorithm is derived from a new Fibonacci-to-Galois transformation algorithm we propose in this paper. Compare to existing algorithms, proposed algorithms are more efficient and cover more general use cases. Moreover, the transformation result shows that the Galois NLFSR used in any Espresso-like stream ciphers can be easily transformed back into the original Fibonacci LFSR. Therefore, this kind of design should be avoided in the future.

Citations (1)

Summary

We haven't generated a summary for this paper yet.