Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fresher Content or Smoother Playback? A Brownian-Approximation Framework for Scheduling Real-Time Wireless Video Streams (1911.00902v3)

Published 3 Nov 2019 in cs.NI

Abstract: This paper presents a Brownian-approximation framework to optimize the quality of experience (QoE) for real-time video streaming in wireless networks. In real-time video streaming, one major challenge is to tackle the natural tension between the two most critical QoE metrics: playback latency and video interruption. To study this trade-off, we first propose an analytical model that precisely captures all aspects of the playback process of a real-time video stream, including playback latency, video interruptions, and packet dropping. Built on this model, we show that the playback process of a real-time video can be approximated by a two-sided reflected Brownian motion. Through such Brownian approximation, we are able to study the fundamental limits of the two QoE metrics and characterize a necessary and sufficient condition for a set of QoE performance requirements to be feasible. We propose a scheduling policy that satisfies any feasible set of QoE performance requirements and then obtain simple rules on the trade-off between playback latency and the video interrupt rates, in both heavy-traffic and under-loaded regimes. Finally, simulation results verify the accuracy of the proposed approximation and show that the proposed policy outperforms other popular baseline policies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.