Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mean-field inference methods for neural networks (1911.00890v2)

Published 3 Nov 2019 in cond-mat.dis-nn, cs.LG, and stat.ML

Abstract: Machine learning algorithms relying on deep neural networks recently allowed a great leap forward in artificial intelligence. Despite the popularity of their applications, the efficiency of these algorithms remains largely unexplained from a theoretical point of view. The mathematical description of learning problems involves very large collections of interacting random variables, difficult to handle analytically as well as numerically. This complexity is precisely the object of study of statistical physics. Its mission, originally pointed towards natural systems, is to understand how macroscopic behaviors arise from microscopic laws. Mean-field methods are one type of approximation strategy developed in this view. We review a selection of classical mean-field methods and recent progress relevant for inference in neural networks. In particular, we remind the principles of derivations of high-temperature expansions, the replica method and message passing algorithms, highlighting their equivalences and complementarities. We also provide references for past and current directions of research on neural networks relying on mean-field methods.

Citations (28)

Summary

We haven't generated a summary for this paper yet.