Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aggregation for potentially infinite populations without continuity or completeness (1911.00872v1)

Published 3 Nov 2019 in econ.TH

Abstract: We present an abstract social aggregation theorem. Society, and each individual, has a preorder that may be interpreted as expressing values or beliefs. The preorders are allowed to violate both completeness and continuity, and the population is allowed to be infinite. The preorders are only assumed to be represented by functions with values in partially ordered vector spaces, and whose product has convex range. This includes all preorders that satisfy strong independence. Any Pareto indifferent social preorder is then shown to be represented by a linear transformation of the representations of the individual preorders. Further Pareto conditions on the social preorder correspond to positivity conditions on the transformation. When all the Pareto conditions hold and the population is finite, the social preorder is represented by a sum of individual preorder representations. We provide two applications. The first yields an extremely general version of Harsanyi's social aggregation theorem. The second generalizes a classic result about linear opinion pooling.

Summary

We haven't generated a summary for this paper yet.