Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems (1910.14596v4)

Published 31 Oct 2019 in quant-ph, cs.NA, and math.NA

Abstract: We present a quantum eigenstate filtering algorithm based on quantum signal processing (QSP) and minimax polynomials. The algorithm allows us to efficiently prepare a target eigenstate of a given Hamiltonian, if we have access to an initial state with non-trivial overlap with the target eigenstate and have a reasonable lower bound for the spectral gap. We apply this algorithm to the quantum linear system problem (QLSP), and present two algorithms based on quantum adiabatic computing (AQC) and quantum Zeno effect respectively. Both algorithms prepare the final solution as a pure state, and achieves the near optimal $\mathcal{\widetilde{O}}(d\kappa\log(1/\epsilon))$ query complexity for a $d$-sparse matrix, where $\kappa$ is the condition number, and $\epsilon$ is the desired precision. Neither algorithm uses phase estimation or amplitude amplification.

Citations (3)

Summary

We haven't generated a summary for this paper yet.